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I TECHNICAL MEMORANDUM 

I .  I n t r o d u c t l o n  

T h i s  p a p e r  p r e s e n t s  a c o n t i n u a t i o n  o f  t h e  work 
d e s c r i b e d  i n  Reference  2 .  T h a t  r e p o r t  p r e s e n t e d  s e v e r a l  
techniques f o r  e s t i m a t i n g  t h e  o r b i t a l  p a r z m e t e r s  o f  p l a n e t a r y  
a r t i f i c i a l  s a t e l l i t e s  and t h e  p l a n e t a r y  g r a v i t a t i o n a l  parameter. 
T l i i s  work p r e s e n t s  a more d e t a i l e d  a n a l y s i s  of t h e  accu racy  
t o  wliich t h e  method of d i f f e r e n t i a l  c o r r e c t i o n  w i t h  a l eas t  
s q u a r e s  e s t i m a t i o n  c r i t e r i o n  can  b e  e x p e c t e d  to converge .  The 
a n a l y s i s  i s  performed f o r  a SimpIlficC?, c a s e  of  a s a t e l l i t e  
o r b i t i n g  IYlars and b e i n g  t r a c k e d  from e a r t h .  The Doppler 
measurements f o r  a s e t  of o r b i t a l  p a r a m e t e r s  a re  computed 
and t h e n  c o r r u p t e d  by a d d i t i v e  random n o i s e  w i t h  a normal  
d i s t r i b u t i o n .  The method of d i f f e r e n t i a l  c o r r e c t i o n s  i s  t h e n  
u s e d  t o  estimate t h e  o r b i t a l  p a r a m e t e r s  of  t h e  s a t e l l i t e  from 
these  n o i s y  measurements .  The c o v a r i a n c e  m a t r i x  f o r  t h e  e r r o r s  
i n  t h e  e s t i m a t i o n  i s  g e n e r a t e d  f o r  t h e  nominal  o r b i t a l  p a r a -  
meters of t h e  s a t e l l i t e  and i s  a bound on these  e r r o r s .  The 
rnethod p r e s e n t e d  here i s  s e l f - c o n t a i n e d  b u t  i s  p r i m a r i l y  i n t e n d e d  
t o  supplement  Refe rence  2 .  T h e r e f o r e ,  some mater ia l  which has  
1)etfn t r e a t e d  f a i r l y  comple te ly  i n  t ha t  p a p e r  h a s  been covered  
r a t h e r  s u p e r f i c i a l l y  h e r e .  

11. P h y s i c a l  Model 

A )  Coord ina te  Systems:  F o r  t h i s  s t u d y ,  w e  w i l l  u s e  t h r e e  
c o o r d i n a t e  s y s t e m s .  These are:  

1) Sun-Centered E c l i p t i c .  The o r i g i n  of t h e  c o o r d i n a t e  
s y s t e m  i s  l o c a t e d  a t  t h e  c e n t e r  o f  t h e  sun  and t h e  
z -ax i s  i s  p e r p e n d i c u l a r  t o  t h e  p l a n e  o f  t h e  e c l i p t i c  
p o i n t i n g  toward c e l e s t i a l  n o r t h .  The p o s i t i v e  x-axis 
i s  i n  t h e  e c l i p t i c  and p o i n t s  to t h e  v e m a l  equinox 
of t h e  e a r t h .  The y - a x i s  i s  i n  t h e  e c l i p t i c  and com- 
p le t e s  t h e  r i g h t  hand c o o r d i n a t e  s y s t e m .  

2 )  P l ane t -Cen te red  E c l i p t i c .  I d e n t i c a l  i n  o r i e n t a t i o n  
t o  the sun-cen te red  e c l i p t i c  frame b u t  w i t h  i t s  o r i g i n  
a t  t h e  c e n t e r  of  t h e  p l a n e t .  
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3 )  I’lanet-Centered S a t e l l i t e  P l a n e .  Thc o r i g i n  o f  t h e  
c o o r d i n a t e  system i s  a t  t h e  c e n t e r  o f  t h e  p l a n e t  and 
t , h c  p o s l  t l v e  z-ax1 s i s  p e r p e n d l c u l a r  to the s a t e l l i t e  
p l a n e  and p a r a l l e l  t o  t h e  n a t e l l l t c  a n g u l a r  momentum 
v e c t o r .  Tlic x-ax3.s i s  i n  t h e  s a t e l l i t e  o r b i t a l  p l a n e  
and p o i n t s  t h rough  t h e  s a t e l l i t e  p e r i a p s i s .  
comple tes  t h e  r igh t -hand  s e t .  

The y -ax i s  

The p o s i t i o n  and v e l o c i t y  of a s a t e l l i t e  i n  a K e p l e r i a n  
o r b i t  may be comple t e ly  s p e c i f i e d  by t i m e  and t h e  s i x  o r b i t a l  
c o n s t a n t s  

a = semi-major a x i s  

e = e c c e n t r i c i t y  

T = t i m e  of p e r i a p s i s  p a s s a g e  

i = i n c l i n a t i o n  

w = argument of p e r i a p s i s  

R = l o n g i t u d e  o f  a s c e n d i n g  node .  

The v a r i a b l e s  a and e d e f i n e  the s i z e  and shape o f  t h e  
o r b i t ,  ‘I a l l o w s  u s  to r e l a t e  t r u e  anomaly t o  a b s o l u t e  t i m e ,  and 
i , w ,  and R are  a se t  of E u l e r  a n g l e s  d e f i n i n g  t h e  o r i e n t a t i o n  o f  
t h e  s a t e l l i t e  o r b i t a l  p l a n e  w i t h  r e s p e c t  t o  a r e f e r e n c e  frame. 
We a l s o  d e f i n e  

f = t r u e  anomaly 

1-1 = g r a v i t a t i o n  p a r a m e t e r  o f  t h e  a t t r a c t i n g  mass. 

The a n g u l a r  v a r i a b l e s  ( i , w , R , f )  a re  i l l u s t r a t e d  i n  F i g u r e  1. 

I n  t h e  s a t e l l i t e  o r b i t  p l a n e ,  t h e  magnitude o f  t h e  
r a d i u s  v e c t o r  i s  g i v e n  by 

2 a (1 -e  ) 
l+e cos  f. r =  

‘I’he i n - p l a n e  v e l o c i t y  components a re  g i v e n  by 

e s i n  f 
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The relation between f and time I s  given by Kepler's equation 

E: - e sin E = (t-T> a3 

where E = eccentric anomaly 

and 
-' I- -2- u'l-e sin E 

1-e cos E sin f = 

are 

(4) 

The coordinates in the planet-centered satellite plane 

= r cos f - rf sin f x3 = c o s  f; x3 

= r sin f + rf cos f y3 y3 = r sin f; 

z 3  = 0; z 3 = o .  

l'o transform to the planet-centered ecliptic plane we require 
t hme successive coordinate rotations of -LO, -i, and -R about 
the instantaneous z, x, and z axes, respectively. In vector- 
matrix notation, we have 

[cos 

l o  i 

I sin i 

R 

R 

-sin 

cos 

0 

0 

-sin 

cos 

w 

w 
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S i m i l a r l y ,  t h e  v e l o c i t y  v e c t o r  i s  t r a n s f o r m e d  u s i n g  

v = A v  . -2 -3 ( 7 )  

It shou ld  be emphasized t ha t  t h e  s a t e l l i t e  o r b i t a l  e l e m e n t s  
a re  re fer red  t o  t h e  p l a n e t - c e n t e r e d  e c l i p t i c  r e f e r e n c e  frame 
arid n o t  t h e  more common p l a n e t - c e n t e r e d  e q u a t o r i a l  frame. If 
i t  i s  d e s i r a b l e  t o  r e f e r  t h e  o r b i t a l  e l e m e n t s  t o  t h e  e q u a t o r i a l  
f rame ( e . g . ,  when p e r t u r b a t i o n s  ciue t o  h i g h e r  o r d e r  terms i n  
t h e  p l a n e t a r y  g r a v i t a t i o n  f i e l d  are to be i n c l u d e d )  E q u a t i o n s  ( 6 )  
and ( 7 )  must be w r i t t e n  as 

r = BA g3 -2 

= BA v ( 8 )  E2 -3 

where 

cos  ct - s i n  ct o 7 1 0 0 

B =  
s i n  i 0 c o s  i 

i 

J 
r 

cos 6 - s i n  8 0 1  1 0 0 

s i n  B c o s  6 0 1 0 cos  i - s i n  i 

0 0 1J LO s i n  i c o s  i 
P P 

P P 

f !  

ct = a n g l e  between t h e  v e r n a l  equinox of  t h e  e a r t h  
and t h e  a scend ing  node of  t h e  o r b i t  o f  Mars 
measured i n  t h e  e c l i p t i c  p l a n e  

i = i n c l i n a t i o n  o f  t h e  M a r t i a n  o r b i t  
0 



. BELLCOMM, I N C .  - 5 -  

@ = angle between the Martian ascending node and 
the Martian vernal equinox measured in the Martian 
o r b i t a l  plane 

I = inclination of the Martian polar axis to the 
Martian orbital plane. 

B) Tracking Geometry 

For simplicity, the earth is assumed to be in a 
circular orbit with its polar axis at zero inclination. Mars 
is assumed to be in an elliptical, inclined orbit with its 
polar axis inclined to its orbital plane. A satellite in 
an elliptical orbit about Mars is tracked by an antenna 
located on the surface of the earth. 
are defined: 

The following vectors 

H(t) - location of the tracking antenna in an earth- 
centered ecliptic frame. 
- 

D(t) - vector from the center of Mars to the center 
of earth in a sun-centered ecliptic frame. 
- 

r ( t )  - location of the Mars satellite in a Mars-centered 
ecliptic frame. 
- 

The first two vectors are assumed known to a fairly h i g h  degree 
of accuracy. (This accuracy will be examined more closely in 
Appendix A), The third vector is what we wish to determine ai?d 
is initially known only approximately. I f  we now define 

p = vector f rom the tracking antenna to the satellite, - 
we see from Figure 2 that 

= - r(t> 

At the tracking station, we measure the Doppler shift of a 
signal sent from the station to the satellite and back again. 
This allows us to calculate* the relative velocity between the 
satellite and the antenna along the p direction. Thus ,  we can 
consider the measurements F ( t .  ) taken by the tracking station 
to be 1 

/. 
= - P(ti> (10) 

* E q .  (9) is approximate f o r  t h e  case o f  a i.eal measurement 
program.  See point (6) on page 15. 
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where p indicates a unit vector. The measured value of the 
Doppler shift is assumed to contain a random error. 
is to use a sequence of N measurements taken at times t l ,  t2, ..., 
tN to determine the orbital parameters (a,e,~,i,w,R) of the 
::atelli.te p l u s  the gravitational parameter ~ . l  of Mars. The 
nlcthod we will use will be that of differential corrections. 

111. Method of Differential Corrections 

Our object 

A) Suppose we wish to estimate the m-component state 
vector, x,, of a system using a p-component measurement vector, 
z containing random errors, E, which are independent of the 
state x. If we assume the measurements to be linear functions 
of the-state, we may write 

-, 

where H is a known p by m matrix of constants. We also assume 
the measurement noise to be normally distributed with a ze ro  
mean, so that 

ELL] = - 0 

E[V v 1 = R a knowu; p by p matrix). T - -  

If the measurement process is nonlinear, 

z = F(x,ti) + i - 

i.t is necessary to approximate the relation given in Equ.ation (11). 
To do this, assume we have a first guess, &, for the state t h a t  
is close to the actual solution, x. Let the measurement vector 
corresponding to x be given by E, i.e., 

- 

- 
- 

- 
z.  
-1 

Then, we may write 

To first order, we may write I 
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then we have 
r 1 

If we set 
aF(x,ti) 

(i = 1, ...,p 1 
( j  = 1, ..., m), - ij 

x = x  
= [ ax,  ] 

- - 

then we have the analogous form to Equation (ll), where the 
value of the state, 5, has been replaced by i t s  deviation, 6x. - 

weighted least-squares estimate, - x, that minimizes the cost 
function 

Using a maximum likelihgod estimator, we seek a 

In Reference (1) it is shown that the estimate is given by 

where 
T -1 P-l = H R H. 

We then set = x and repeat the iteration. It is also shown 
in Reference-(l)-that P is the covariance matrix for this estimate 
of the state, i.e., 

T P = E[e e 1 - -  
where 

Several techniques f o r  implementing this algorithm (Equation 14) 
are given in Reference (2). In practice, it proved  faster to 
use the nonlinear term 
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hi - F(5,ti)l 
t o  replace the linear approximation 

in the actual computation of Equation (14). Comparison of 
Equations (12a) and (12b) show that the two terms are equivalent. 

B) Application to the Problem 

For our problem, we define the state of the satellite 
by the six orbital elements 

When the gravitational parameter i s  being estimated, the state 
is enlarged to seven dimensions 

The measurement process 

is highly nonlinear and must be linearized as described in 
Equation (12b). The derivation of the partial derivatives for 

is given in Appendix B. 

The components of t h e  measurement noise, v are assumed i’ 
to be uncorrelated, w i t h  a constant standard deviation. Thus 

ECv.v.1 = aiL-6ij 3 

1 J  
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and therefore, the covariance matrix is the diagonal matrix 

2 R = u I . (I = p by p identity matrix) 

From Equations (14) and (15), we see that 

- -1 T - x = - x t [HTH] H ( z - F ( E ) )  - 

The elements of the P matrix represent the expectations of the 
products of the errors in the components of x, i.e., 

= E[~x.~x.? . 
pis 1 J -  

Thus,  the diagonal elements of P represent the square of the 
standard deviation of each component of the state vector 5, 
while the off-diagonal elements represent the cross-correlation 
between errors in these elements. 

- 
If our first guess, 5,  is close enough to the solution 

point for the minimum of the cost function given in Equation (13), 
the iterative use of Equation (16) will lead us to that solution 
point. At this solution point, the covariance matrix, P, gives 
us some idea of the accuracy to which we have converged. An 
estimate of the best value of 0 for the measurement noise f o r  
this particular problem is given in Appendix A. 

IV. Simulation Results 

For simulation purposes, Earth and Mars were assumed to 
move in Keplerian orbits with the following elements (defined 
w i t h  respect to the sun-centered ecliptic frame): 

e 
T (hrs) 

i 
w 

n 
p(km3/hrs2) 

Earth Mars 

1.495( l o 8 )  2.275 ( lo8) 
0.0 0.093368 
0 . o  0.0 
0" 1.845~91~ 
O 0  286.08176" 
O 0  49.24903O 

1.71.99861+(1018) 1.7199864 ( io'' ) . 
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The tracking station was assumed to be located on 
the surface of the earth ( R E  = 6378.16 km) at 35' N latitude, 
117O W longitude. 
was taken as 

The angular velocity of the earth's rotation 

w = 7 .2921158(10-5) rad/sec. ie 

The earth's polar axis was assumed to have zero inclination. 
Using this information plus the nominal elements for the Mars 
orbiting satellite, the theoretical Doppler shift is calculated 
from Equations (9) and (10). For the cases simulated, the 
Doppler shifts calculated corresponded to relative velocities 
ranging from 27,500 km/hr (7600 m/sec) to 39,000 km/hr 
(10,800 m/sec). The main contribution to this was from c(t), 
the relative velocity between earth and Mars. These measure- 
ments are then corrupted by additive random noise with a normal 
distribution having zero mean and a standard deviation of 

u = .152 km/hr c ( . 0 4 2 3  m/sec) . 
This set of corrupted measurements [ F ( t l ) ,  i = 1,2 ..., N] is then 
used to estimate the original orbital parameters. 

From Equation (l7), we may calculate the covariance 
matrix P using 

2 T  P = u [ H  H 1 - l .  

Covariance matrices are evaluated at the nominal state values 
to avoid introducing effects caused by different solution points 
for different numbers of measurements and different sets of 
measurement noise. 

The results of the computer simulation are illustrated 
in Figures 3 to 28. The values of the orbital parameters 
(a,e,T,i,u,Q), the gravitational parameter (p), and the data 
point spacing (At) used in simulating the measurements are 
given on each. Curves 1 and 2 in Figures 3 to 10 are the 
standard deviations for the estimates of the state variables 
as functions of tracking time for a rather elliptical (e = .574)  
orbit. Curves 3 and 4 in Figures 3 to 10 give the same quantities 
for a nearly circular (e = . 0 5 )  orbit. Curves 1 and 3 are 
f o r  a six dimension state vector and Curves 2 and 4 are for a 
seven dimension state, The predominant feature of these curves 
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is a rather sharp drop initially in the standard deviation 
which changes into a more gradual decline as the tracking 
time increases. The curves a l s o  appear to be modulated by 
periodic terms whose predominant period is the orbital 
period f o r  curves 1 and 2 and half the orbital period f o r  
curves 3 and 4 .  The first big drop in the standard devia- 
tions levels off somewhat at the end of the flrst orbit of  
tracking. Each succeeding orbit of tracking time adds a 
diminishing amount to the accuracy of she esimate. It is 
also interesting to note that  each shar-p drop in the standard 
deviation curves for orbits with lai*ge eccentricity occurs 
around periapsls. For  those cases whe~e 

a = 12,760 km , 
the satellite passes through periapsis at 

t = 14.14 hrs 

26.28 hrs 

38.42 h r s  

50.56 hrs. . 

The effect is most easily visible in Figure 3, curve 1. This 
effect is due to the increased angular velocity of the satellite 
near periapsis. Thus, the time rate of information on the shape 
of the orbit is high near periapsls and low near apoapsis. For 
orbits with low eccentricity ( e . g . ,  curves 3 and 4 on Figures 3 
and 4, respectively), this effect is no t  present. Instead, a 
term with about double the orbital frequency appears to modulate 
the drop in the standard deviations. 

Comparison of standard deviations between curves 1 and 2 
and between curves 3 and 4 shows the effects of including the 
estimation of the gravitational parameter. The standard devia- 
tion of the semi-major axis (Figures 3 and 4) increases four 
orders of magnitude when 1-1 is estimated. Also, for the low 
eccentricity case, the standard deviations of w and Q increase 
by,an order of magnitude (Figures 8 and 9 ,  respectively). The 
standard deviation of T changes only slightly when 1-1 is esti- 
mated, but increases by an order of magnitude when we go from 
a highly eccentric t o  a nearly circular orbit (Figure 6). The 
standard deviation of p also increases as eccentricity decreases 
(Figure 10). The standard devlations of e and i appear to be 
affected very little by changes in e or by including p in the 
estimation (Figures 5 and 7, respectively). 
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Figures 1.1-16 illustrate the effects of changing 
the  data point spacing, Curves 1, 5, arid 6 have a data 
p o i n t  spacing of .5  hours, .1 hours and 1.0 hours, respec- 
t i v e l y .  In general, an increase of the data point spacing 
from . 5  hrs to 1.0 hrs (thereby halving the number of data 
points in a given time period) results in an increase of 
the standard deviations of about 45% to 60%. Decreasing 
the data point spacing to .1 hrs (using five times as many 
Points in a given time period))yields a drop of only 50% 
to 60% in the standard deviations. The shapes of the 
curves of standard deviations v s .  tracking time remain 
essentially the same and are merely shifted up or down. 

Figures 17-22 show the effect of orbital period. 
The semi-major axis for curve 1 is 12,760 km and for curve 7 
is 8960 km. The remaining orbital elements are identical 
for the two orbits. 

Comparison of curves 1 a n d  7 shows that the 
accuracy f o r  the estimates of a (Figure 17) and T (Figure 19) 
are affected more by the number of orbits of tracking data 
(i.e., the angular length of orbit tracked) rather than the 
1.ength of time the satellite is tracked. The orbit in 
curve 1 has a period of 12.1415 hrs while that in curve 7 
has a period of 7.13 hrs. Periapsls for the 7.13 hr orbit 
occurs at 

t = 9.13 hrs 
16.26 hrs 
23.39 hrs 
30.52 hrs 
37.65 hrs 
44.78 hrs . 

and the drops in the standard deviations at these points are 
evident. The values for standard deviations of a and T are con- 
sistently smaller for the shorter period orbit in curve 7, 
while those for e, i, w and Q are roughly the same for curves 1 
and 7. Temporary large differences in them are due to the dif- 
ferent orbital frequencies modulating their decrease. The i n -  
crease in tracking accuracy of "arr results from the higher 
angular velocity associated with shorter period orbits. An 
error in rrarf results in an error in period which causes a 
growing phase difference between the measured and calculated 
positions of the satellite. This shows up more rapidly f o r  
a shorter period satellite. For a similar reason, the accuracy 
of estimation of y should increase faster f o r  a short period 
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orbit. This effect can be seen in Equation ( B 7 )  in Appendix B, 
where the coefficients of the secular terms in - aF and - aF and 

aF aa alJ  
the constant in 
with the orbital period. 

vary inversely with a and hence inversely 

The standard deviations provide us with a useful 
bound on the magnitud 
distributed error, 

Prob [ 

Prob 1: 

Prob [ 

of the errors since, f o r  a normally 

6Xi/ 5 2 0  1 = 95.45% x, I 

6Xi I 2 3 O X  1 = 9 9 . 7 3 % .  
i 

Figures 23-28 are a set of standard deviations and error 
values f o r  a typical case. The curves are the estimated 
standard deviations and the discrete points are the absolute 
value of the errors between the nominal orbital elements and 
the estimated values. The figures show that the errors 
generally lie within the la bound. 

Another useful quantity is the normalized covariance 
matrix. This is generated using the relation 

n 'ij 
pij 

= e-.--.- 

'iipjj . 
n 

It can be seen that the diagonal elements of Piel will be unity 
" 

while the off-diagonal elements range from zero to unity. A 
h 

value of unity for Pij indicates that 6xi and 6x 
related while a value o f  zero indicates that their relationship 
is purely random. Examples of the normalized covariance matrix 
for tracking time of 6 and 48 hours for a six and seven dimen- 
sion state vector are given in Tables 1 and 2, respectively. 

are linearly 
j 

V. Areas for Further Investigation 

1) The motion of the earth was assumed to be a circular 
orbit with zero inclination and the earth's polar axis was as- 
sumed to be normally inclined to the orbital plane in order 
to avoid the transformation of R(t) from the earth-centered equa- 
torial frame to the earth-centered ecliptic frame described 
previously. This transformation might be introduced for completeness. 
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2) No provision was made to take into account loss of 
t,r*acklrig data due to occultation of the satellite by either 
earth or Mars. This could make a significant difference in 
the time needed to estimate the state vector, particularly 
if data near periapsis is lost. 

3) The motion of the satellite about Mars was assumed 
to be essentially Keplerian in nature. For the orbits and 
tracking times discussed, this is a good assumption. How- 
ever, for higher orbits (i.e.d, synchrohous altitudes and above), 
solar perturbations may also exert a noticable effect. It 
should also be noted that the J2  term in the planetary gravi- 
tational field gives rise to secular changes in w and '2. These 
changes may amount to about .05 - .2  deg/day for the orbits 
discussed and suggest that our estimate for these parameters 
be updated at weekly intervals. Alternatively, these secular 
changes in w and R could be included in our equations of motion 
to allow longer periods of validity f o r  our estimate. If this 
is done, the additional coordinate rotations described in 
Equation 8 must be included so that calculations may be per- 
formed in the planetary equatorial frame. 

4) The random noise added to the simulated measurements 
was generated by the normal distribution pseudo-random noise 
generator included in the Univac 1108 Mathpack subroutine. 
The desired moments were zero mean and a standard deviation of 

0 = ,152. 

These were generally accurate to about .02 for both the mean 
and the standard deviation. However, histograms plotted for 
distributions of 100 points showed that the distribution did not 
closely .resemble the bell-shaped curve for a normal distribution. 
Often, a skewed, two-hump distribution resulted. In addition, 
plots of points in the sequence of their generation showed 
certain non-random patterns (e.g., every second o r  fourth point 
following a smooth curve for 30 or 40 points). This latter 
result violates our assumption of uncorrelated noise. The fact 
that the actual errors did, however, consistently lie near or 
within the one sigma bound indicates that this violation was 
not t o o  serious. Still, a more accurate means of generating 
random noise with a normal distribution might be investigated. 

5) In some instances (e.g., forthe gravitational parameter 1-1) 
we have an a priori estimate of both a parameter and its Statis- 
tics. These a priori statistics of the initial guess may be 
included to weight the initial guess for that parameter more 
heavily. This is done by changing Equation (15) to 
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P- l  = M S 1 t H R  T -1 H 

where 

One effect of including the statistics of the initial 
elements would be to decrease the large standard deviations 
for short tracking times. 

6) For a real measurement program Eq. ( 9 )  must be 
written to account for the light-time correction. That is, 
the measured Doppler shift is the difference between the 
signal frequency transmitted at to from R(to) and that 
received at R(t ’ thls belng a measure of the satellite 
velocity at time tl, where t2-tl=tl-to=D/c (c = velocity 
of light). Corrections for atmospheric refraction may 
also be made (see Ref. 3 ) .  

2’ 

VI. Conclusions 

The state vector of a planetary artificial satellite 
can be accurately determined using range-rate measurements 
taken from earth. The error estimates given by the covariance 
matrix provide a conservative upper bound for errors in the 
state estimation when the method of differential corrections 
is used with simulated noisy measurements. 

The accuracy of the state estimation is a function 
both of the number of data points and the total tracking time. 
No rigorous attempt was made to optimize tracking time or data 
point spacing but a spacing of .5  hrs and a tracking time of 
30-40 hrs yield good results for the cases simulated. The 
accuracy of the estimation for some state vector parameters 
decreased significantly when the gravitational parameter of 
the planet was added to the state vector. 

For relatively eccentric orbits, the state estimation 
showed aPluctuation in accuracy with the same period as the 
orbit. This was caused by the higher rate of data influx near 
periapsis due to the higher angular velocity of the satellite. 
The accuracy in estimation of a and T appeared to depend more 
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on t h e  number of orbits tracked rather than on the tracking 
time. This was caused by the presence of constant or secular  
terms whose coefficients depended on the magnitude of the 
satellite mean motion. The accuracy of estimation of a, 
T, and v ,  as well as w and Q when li i s  estimated, showed an 
increase as the eccentricity of the orbit increased, 

1014-SSB-jan S. s .  Bayliss 
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APPENDIX A 

E r r o r  Sources in the Measurement Function F 

This appendix examines the principal sources of 
error that make up the total error u (see Equation (17) in 
the text) in the measurement function F and derives typical 
one sigma values for their contribution to this total error. 

1) E r r o r  in Tracking Station Location 

Assume typical la station location errors to be * 3 0 m  
(Reference 3a) in the local geographic reference frame 

x-axis = North 

y-axis = East 

z-axis = down. 

For the earth, we have 

RE = 6378.16 km 

ie o = 7.292 rad/sec . 
For a point on the earth's surface at latitude L, the velocity 
clue to the earth's rotation is 

V = REwie cos L . 
An error in location in the z-direction causes a velocity change 
of 

6Vz = w cos L 6z . ie 
An error in the x-direction causes 

6Vx = --w sin L 6x . ie 

An error in th.e y-direction causes no significant error in 
velocity. Combining these contributions, we get 

J6x2+6z2 . ie = w  
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S i n c e  

6x = 6z = 30 , 
we ge t  

6V = ,00308 m/sec ( l a  error) . 
2 )  Error i n  Speed of L i g h t  

+ l o 0  m/sec (Refe rence  4a).  Using a two-way Doppler  measurement 
s y s t e m ,  t h e  r e l a t i v e  v e l o c i t y  i s  g i v e n  by 

Assume t h e  l a  e r r o r  i n  t h e  speed  o f  l i g h t ,  c ,  t o  be 

- CFd 
'R - 7 

where 

Thus,  

F o r  

we g e t  

Then 

Fd = Doppler s h i f t  

Fo = o r i g i n a l  f r e q u e n c y  

T;1 

6VR = "d - s c  . 
2Fo 

VR = 10,900 m/sec 

FO 
= 2200 MHz , 

Fd = 14,700 Hz 

6VR = .000334 m/sec 

3 )  Frequency Measurement Errors 

as .001 m/sec. 
Re fe rence  5 g i v e s  two-way Doppler  t r a c k i n g  e r r o r s  

Refe rence  3b g i v e s  Doppler  measurement a c c u r a c i e s  
as b e i n g  of  t h e  o r d e r  of  .01 Hz or l o w e r .  T h i s  co r re sponds  
t o  a v e l o c i t y  e r r o r  of .00068 m/sec. 
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4) Ephemeris Errors 

Reference 6a gives the l a  errors in the J P L  fitted 
planetary ephemerides for Mars and the earth-moon system 
in an ecliptic reference frame as 

Mars Earth-Moon - 
6X 35 km 19.2 km 

6Y 34.7 km 13.8 km 

6 2  21.1 km 8.35 km 
- 

E r r o r s  in the tangential direction will have only 
a negligible effect on the measurement function through changes 
in the station-satellite direction. Errors in the radial 
direction will have a significant effect on the planetary 
velocity and will be examined further in the next section. 
F o r  estimation purposes, we assume the radial position error 
to be 17 km for Mars and 35 km for earth. Note that this does 
not include the error in the A.U. 

Reference 6b gives the plots of the velocity residuals 
for the ephemeris calculations in the J P L  Development Ephemeris. 
From inspection, it would appear that a l o  figure of .03 m/sec 
f o r  earth and .Ol5 m/sec f o r  Mars are representative values. 
We assume this figure includes effects of radial position errors. 

5) Error in the Astnonomical Unit 

Reference 3c gives two references for values of the 
A.U. (References 7 and 8). The Values given are 

AU = 149,598,000 tlOO km (Reference 7) 

AU = 149,597,892 5100 km (Reference 8) 

Since ephemeris position is given in terms of the A.U., 
an error in the A.U. leads to an.error in planetary position. 
Assuming average radial distances for earth and Mars of 

rE = 1.0 A . U .  

rM = 1.52 A.U. , 

we get, a radial error of 100 km in the position of earth and 
152 km in the position of Mars. Using the energy equation 
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we see 

The a v e r a g e  v a l u e s  f o r  R and V a r e  g i v e n  i n  Refe rence  4b as 

Mars - E a r t h  

R 1.496 (10”) m 2.28(101’) m 

V 29,770 d s e c  24,020 m/sec . 
rnL I I I ~  - v a l u e  f o r  t h e  g r a v i t a t i o n a l  p a r a m e t e r  o f  the sun  i s  g i v e n  
as 

P = 1 .327(1020)  rn3/sec2 . 
Using t h e s e  v a l u e s ,  w e  ge t  

f o r  t h e  ear th  and 

f o r  Mars due t o  e r r o r  i n  t h e  A.U. 

6 )  Summary o f  Errors 

From S e c t i o n s  1-5,  w e  had t h e  following el-rors :  

Source  
S t a t i o n  L o c a t i o n  

Value 

.00308 m/sec 

Speed of L i g h t  .000334 m/sec 
Frequency Measurement .00068 m/sec 
Ephemeris  

E a r t h  .03 m/sec 
Mars .015 m/sec 

I .  0199 m/sec Earth 

Mars .0162 m/sec 

A.U. 
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Taking the square r o o t  of the sum of the squares of these 
values, we get 

6~ = .0423 m/sec 

= .152 km/hr (lo error) . 
This roughly compares with the la values of k.03 m/sec used in 
the JPL report on Mariner IV tracking analysis (Reference 3). 

The RMS error was computed assuming uncorrelated 
error sources. Obviously some of the errors described are 
correlated. Thus the value of .0423 m/sec should be an 
upper bound on the actual error. This is true s o  long as 
the heliocentric angle between Earth and Mars is less than 
g o o ,  since the A.U. errors in heliocentric velocity are 
correlated and should be added vectorially. For example, 
at O o  heliocentric angle the relative velocity error should 
be k . 0 0 3 7  m/sec, while at 1800 it should be k . 0 3 6 1  m/sec. 
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Partials of Measurement Function 

From Equation (IO), we had the measurement function as: 

,. 
F ( x , t )  = p(X,t>.p(X,t> - 

where 

thus 

Since 

we get 

A l s o ,  we may show 

Thus 

From (B2), we see 

P - . I" -ua-  ax 
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Thus 
c 

h i 

A .  

The quantities p, t, and I P  - I are evaluated using Equation (B2) 
with the nominal values of x . The values f o r  - and - can be 
calculated in the following manner. 

ar - a2 
ax ax  - - - 

From Equations ( 5 )  and ( 6 ) ,  it can be shown 
"_ 

cos fi cos(w+f) - sin R sin(w+f) cos  i ' 

sin R cos(w+f) + cos  R sin(w+f) cos i 

sin(w+f) sin i 
i r = Irl - - 

r 7 
1-cos R(sin(o+f) + e sin w )  - sin R cos i (cos(w+f) + e cos w )  i 

- = N 1 -sin R(sin(w+f> + e sin w >  + cos R cos i (cos(w+f> + e cos w >  1 
d 

I 

(cos(w+f) + e cos w )  sin i i 
i 
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Using these equations, the partials may 

- a Irl 
x2 + Irl- ax2 aa 

L 

where 

- 
ar 

be  shown to b e  

n -- 
i i -cos  fi sin(w+f) - sin R cos(o+f) cos i / 

-sin fi sin(w+f) + cos R cos(w+f) cos i I i 
1 i cos(w+f) sin i 

- -  alrl Irl e sin f af 
aa a + I C ~  l+e  cos f aa - - -  

a f  
a-r I C ~  l+e cos f a T  - 

- e sin f a Irl - -  



c 

Al'l 'KNl3.1 X t+ - I r -  

af sin f - -  ( 2 i - e  cos f) 
ae (1-e I 

- 

The remaining partials are 

-sin R cos(w+f) - cos R sin(o+f) cos i 

cos R cos(w+f) - sin R sin(w+f) cos i 
0 

- cos  R sin(w+f) - s i n  SI cos(o+f) cos i 

cos(o+f) sin i 

ar - - -  afi - 121 

- s i n  Q sin(w+f) + cos R cos(o+f) cos i 
ar 
aw 
- 

- =  

ar 

i - - -  a i  - I C ~  -COS R sin(w+f) sin i 

J sin(w+f) cos i 

For the partials of r with respect to x, we have - 



J 

~. 

ar 
- =  N a w  
- 

APPENDIX B 

where 

- c o s  a(cos(w+f) + e C O S  w )  + sin 52 cos i(sin(w+f) + e sin W )  

-sin n(cos(w+f) + e COS w )  - cos R cos i(sin(w+f) + e sin w )  

- 5 -  

a N  N 
aa 2a 
- = - -  

r 
- =  - e r -  - N a f  + N T 
ar 
ae 2 -  ae 
- 

1-e 

w h e r e  

7 cos i cos w 
t 

r-cos a sin w - sin 
I 

T =  i -sin a sin w t cos ~2 cos i cos w i 

cos w sin i 1 I E 
i 

__  
sin sin i(cos(o+f) + e cos W )  

r-cos R sin i(cos(w+f) + e cos w ) ~  1 - = N  ai ! 1 cos i(cos(w+f) + e cos w )  

L -(sin(w+f) + e sin u) sin i 



sin n(sin(w+f) + 
a r  i 

- 6 -  

s i n  U )  - cos cos i(cos(w 

-cos n(sin(w+f) + e sin W )  - sin w cos  i(cos(w+f) + e cos W )  1 0 

- 
= N  - 

an 

Equations ( B 6 )  to (B15) a l l o w  us to calculate the vector 

ax (Z,t). - 
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f = TRUE ANOMALY 
0 = ARGUMENT OF PER1 APSl S 
9 = LONGITUDE OF ASCENDING NODE 
i = I N C L I N A T I O N  OF ORBIT 
A = VERNAL EQUINOX OF' EARTH 
N = ASCENDING NODE 

P = SPACECRAFT P O S I T I O N  
= P E R l A P S l S  

ORB I TAL 
PLAN E 

I C  

FIGURE 1 - GEOMETRY OF ANGLE VARIABLES 
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F IGURE 3 - STANDARD D E V I A T I O N  OF a VS TRACKINO T I M E  



FIGURE U - STANDARD DEVIATIW OF a V S  TRACKING TIME 
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FIQURE 5 0 STANDARD D E V I A T I O N  OF e VS TRACKING T I M E  
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FIGURE 6 - STANDARD DEVIATION OF T VS TRACKING T I M E  
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FIGURE 8 - STANDARD DEVIATION OF w V S  TRACKING TIME 



FIGURE 9 - STANDARD DEVlATlOW OF C! VS TRACKIIO TIME 
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FIGURE 12 - STANDARD DEVIATION OF e VS TRACKING T I M E  
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FIGURE 13 - STANDARD DEVIATION O F T  V S  TRACKING TIME 
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FIGURE I 4  - STANDARD DEVIATION OF i VS TRACKING TIME 
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FIGURE 15 - STANDARD DEVIATION OF w V S  TRACKING TIME 
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FIGURE 16 - STANDARD DEVIATION OF fl VS T R A C K I N G  T I E  
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F I G U R E  17 - STANDARD D E V I A T I O N  OF I V S  TRACKING TlUE 
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FIGURE 18 - STANDARD D E V l A T l O N  OF e VS TRACKIHG TIME 
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FIGURE 20 - STANDARD D E V I A T I O N  OF i VS TRACKING T I M E  
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FIGURE 21 - STANDARD DEVIATION OF o V S  TRACKING TIME 
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FIGURE 22 - STANDARD DEVlATlOW OF Q VS TRACKING TIME 
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F IGURE 23 - ABSOLUTE ERROR AND STANDARD D E V I A T I O N  OF a VS TRACKING T I M E  
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FIGURE 24 - ABSOLUTE ERROR AND STANDARD DEVIATION OF e V S  TRACKING TIME 
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F IGURE 25 - ABSOLUTE ERROR AND STANDARD D E V I A T I O N  OF t VS TRACKING T I M E  
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F I G U R E  26 - ABSOLUTE ERROR AND STANDARD D E V I A T I O N  OF i VS TRACKING T I M E  
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F I G U R E  27 - ABSOLUTE ERROR AND STANDARD D E V I A T I O N  OF w VS TRACKING T I M E  
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